Interpretable Deep Learning for Surgical Tool Management

نویسندگان

چکیده

This paper presents a novel convolutional neural network framework for multi-level classification of surgical tools. Our classifications are obtained from multiple levels the model, and high accuracy is by adjusting depth layers selected predictions. enhances interpretability overall predictions providing comprehensive set each tool. allows users to make rational decisions about whether trust model based on pieces information, can be evaluated against other consistency error-checking. The prediction achieves promising results surgery tool dataset knowledge base, which important contributions our work. provides viable solution intelligent management tools in hospital, potentially leading significant cost savings increased efficiencies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

InterpNET: Neural Introspection for Interpretable Deep Learning

Humans are able to explain their reasoning. On the contrary, deep neural networks are not. This paper attempts to bridge this gap by introducing a new way to design interpretable neural networks for classification, inspired by physiological evidence of the human visual system’s inner-workings. This paper proposes a neural network design paradigm, termed InterpNET, which can be combined with any...

متن کامل

A Deep Learning Interpretable Classifier for Diabetic Retinopathy Disease Grading

Deep neural network models have been proven to be very successful in image classification tasks, also for medical diagnosis, but their main concern is its lack of interpretability. They use to work as intuition machines with high statistical confidence but unable to give interpretable explanations about the reported results. The vast amount of parameters of these models make difficult to infer ...

متن کامل

Node-By-Node Greedy Deep Learning for Interpretable Features

Multilayer networks have seen a resurgence under the umbrella of deep learning. Current deep learning algorithms train the layers of the network sequentially, improving algorithmic performance as well as providing some regularization. We present a new training algorithm for deep networks which trains each node in the network sequentially. Our algorithm is orders of magnitude faster, creates mor...

متن کامل

Interpretable Deep Learning applied to Plant Stress Phenotyping

Availability of an explainable deep learning model that can be applied to practical real world scenarios and in turn, can consistently, rapidly and accurately identify specific and minute traits in applicable fields of biological sciences, is scarce. Here we consider one such real world example viz., accurate identification, classification and quantification of biotic and abiotic stresses in cr...

متن کامل

Interpretable Deep Convolutional Neural Networks via Meta-learning

Model interpretability is a requirement in many applications in which crucial decisions are made by users relying on a model’s outputs. The recent movement for “algorithmic fairness” also stipulates explainability, and therefore interpretability of learning models. And yet the most successful contemporary Machine Learning approaches, the Deep Neural Networks, produce models that are highly non-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-87444-5_1